
Some example BusinessObjects and explanations of parts of their
scripts

Note that all Developers can open the "DB Utility" shown below and from this screen access ALL the
structural details of every BusinessObject in their App. This allows Developers to "learn by doing" as they
can review the contents of the BusinessObject and then open its records/grids/reports in the App and see
how it works.

Orixa Creation Script for a Simplified "Contracts" BusinessObject

Note that this script was generated automatically, by opening the "BusinessObject" record for the "Contracts"
BusinessObject and selecting "Reverse Engineer BusinessObject" from the Actions menu.

The SQL script to Create the "Contracts" BusinessObject
CREATE TABLE "Contracts"
(

"ID" INTEGER DEFAULT UID() NOT NULL,

"OID" INTEGER DEFAULT OID('Contracts'),

"DateStart" DATE,

"DateEnd" DATE,

"CustomersID" INTEGER,

"Name" VARCHAR(100) COLLATE "ANSI",

"StatusID" INTEGER DEFAULT StatusID('In negotiation'),

"ContractsTypeID" INTEGER,

"Internal" BOOLEAN DEFAULT FALSE NOT NULL,

"Description" CLOB COLLATE "ANSI",

"AuthorID" INTEGER,

"LeadStaffID" INTEGER,

"DateCreated" TIMESTAMP DEFAULT Current_Timestamp,

"Current" BOOLEAN DEFAULT true NOT NULL,

"Complete" BOOLEAN DEFAULT false NOT NULL,

"FullName" VARCHAR(120) COLLATE "ANSI" COMPUTED ALWAYS AS IF(COMPLETE = true then 'zzz/' ELSE '') +

IF(Internal = true then 'I' ELSE '') +

'C-' + CAST(OID AS VARCHAR) + ': ' + Name,

"ShortName" VARCHAR(20) COLLATE "ANSI" GENERATED ALWAYS AS IF(Internal = true then 'I' ELSE '')

+ 'C-' + CAST(OID AS VARCHAR(12)) + '-' + OrgCode(CustomersID),

"VATExempt" BOOLEAN GENERATED ALWAYS AS CustomerVATExempt(CustomersID),

CONSTRAINT "PK_Contracts" PRIMARY KEY ("ID"),

CONSTRAINT "LeadStaffID" FOREIGN KEY ("LeadStaffID") REFERENCES "Staff" ("ID")

 ON UPDATE NO ACTION ON DELETE NO ACTION,

CONSTRAINT "ContractsTypeID" FOREIGN KEY ("ContractsTypeID") REFERENCES "Types" ("ID")

 ON UPDATE NO ACTION ON DELETE NO ACTION,

CONSTRAINT "StatusID" FOREIGN KEY ("StatusID") REFERENCES "Status" ("ID")

 ON UPDATE NO ACTION ON DELETE NO ACTION,

CONSTRAINT "CustomersID" FOREIGN KEY ("CustomersID") REFERENCES "Customers" ("ID")

 ON UPDATE NO ACTION ON DELETE NO ACTION

DESCRIPTION 'Default'

)

DESCRIPTION '[Properties]

AddDuplicateRecord=1'

Note the field-names used and how some fields are generated by functions, or link to other tables via
contraints.

Functions Used by the BusinessObject
CREATE FUNCTION "StatusID" (IN "Value" VARCHAR COLLATE "ANSI")

RETURNS INTEGER

BEGIN

 DECLARE Crsr Cursor FOR Stmt;

 DECLARE Result INTEGER;

PREPARE Stmt FROM

' SELECT ID

 FROM Status

 WHERE UPPER(Name) = UPPER(?) ';

OPEN Crsr USING Value;

FETCH FIRST FROM Crsr('ID') INTO Result;

CLOSE Crsr;

RETURN Result;

END

VERSION 1.00!

The "StatusID" function is built into Framework, you can use it in your table definition to create a default value
for the StatusID field.

CREATE FUNCTION "OID" (IN "aLinkTable" VARCHAR COLLATE "ANSI")
RETURNS INTEGER

BEGIN

 DECLARE Crsr CURSOR FOR Stmt;

 DECLARE Result INTEGER;

 DECLARE ID VARCHAR;

 PREPARE Stmt FROM

 ' SELECT

 CAST(ID as VARCHAR) as ID,

 OID

 FROM "SystemDB"."OIDGenerator"

 WHERE LinkTable = ? ';

 OPEN Crsr USING aLinkTable;

FETCH FIRST FROM Crsr ('ID') INTO ID;

FETCH FIRST FROM Crsr ('OID') INTO Result;

EXECUTE IMMEDIATE

 ' UPDATE "SystemDB"."OIDGenerator"

 SET OID = OID + 1

 WHERE ID = ' + ID ;

RETURN Result;

END

VERSION 1.00!

The "OID" Function is built into the Framework, you can use it in your table definition to create a unique
counting-field for each table, so that one column has a value where each new record in the table is one higher
than the previous record. Note that "OID" fields are dependent on a database NOT using distributed data-
structure.

CREATE FUNCTION "OrgCode" (IN "aID" INTEGER)
RETURNS VARCHAR(12) COLLATE "ANSI"

BEGIN

 DECLARE Crsr CURSOR FOR Stmt;

 DECLARE Result VARCHAR(12);

IF aID IS NULL THEN

 SET Result = '';

 ELSE

 PREPARE Stmt FROM

 ' SELECT

 OrgCode

 FROM Organisations

 WHERE ID = ? ';

 OPEN Crsr USING aID;

 FETCH FIRST FROM Crsr('OrgCode') INTO RESULT;

 IF RESULT IS NULL THEN

 SET RESULT = '';

 END IF;

 END IF;

RETURN Result;

END

VERSION 1.00!

CREATE FUNCTION "CustomerVATExempt" (IN "aID" INTEGER)
RETURNS BOOLEAN

BEGIN

 DECLARE Crsr CURSOR FOR Stmt;

 DECLARE Result BOOLEAN;

IF aID IS NULL THEN

 SET Result = false;

 ELSE

 PREPARE Stmt FROM

 ' SELECT

 VATExempt

 FROM Customers

 WHERE ID = ? ';

 OPEN Crsr USING aID;

 FETCH FIRST FROM Crsr('VATExempt') INTO RESULT;

 IF RESULT IS NULL THEN

 SET RESULT = false;

 END IF;

 END IF;

RETURN Result;

END

VERSION 1.00!

CREATE TRIGGER "CascadeLinkTableDeletes" BEFORE DELETE ON "Contracts"
 BEGIN
EXECUTE IMMEDIATE

' DELETE FROM Comments WHERE LinkID = ' + CAST(OLDROW.ID AS VARCHAR(20)) +

' AND LinkTable = ''Contracts'' ';

END

The BusinessObjects record for this BusinessObject
INSERT INTO "BusinessObjects"
(Name, Color, BusObjType,

AddNewButton, LinkToImages, LinkToComments, LinkToAddresses,

LinkToPhones, SecurityLevel, Icon,

DisplayScript, ListScript, ViewScript, DiaryScript,

SummaryScript, Settings)

VALUES

('Contracts', 15519677, 'N', True, False, True, False, False, 0, 7,

 ' SELECT

 IF(Complete = true THEN ''zzz\'' else '''') +

 IF(Internal = true THEN ''I'' ELSE '''')

 + ''C-'' + CAST(OID AS VARCHAR) + '': ''

 + O.Name + '' '' +

 + C.Name AS Name,

 ID

FROM "Contracts" C

LEFT JOIN Organisations O ON O.ID = C.CustomersID

WHERE ID = %d ', ' SELECT

 IF(Complete = true THEN ''zzz\'' else '''') +

 IF(Internal = true THEN ''I'' ELSE '''') +

 ''C-'' + CAST(OID AS VARCHAR) + '': ''

 + O.Name + '' '' +

 + C.Name as FullName, ID

FROM "Contracts" C

LEFT JOIN Organisations O ON O.ID = C.CustomersID

ORDER BY FullName ', 'SELECT

 ID,

 Internal,

 ShortName,

 Name,

 DateStart,

 DateEnd,

 S.FullName as "Status",

 T.Name as ContractsType,

 O.Name as Customer,

 SUM(CI1.WorkedHours) as HoursWorked,

 SUM(CI1.BudgetQuantity) as BudgetQty,

 SUM(CI1.BudgetValue) as BudgetValue,

 SUM(CI1.BilledQuantity) as BilledQty,

 SUM(CI1.BilledValue) as BilledValue,

 IF(SUM(CI1.BudgetValue) = 0 THEN IF((SUM(CI1.WorkedHours) / SUM(CI1.BudgetQuantity) > 1) THEN

''Hours Exceeded'' ELSE ''Within Hours'')

 ELSE IF(SUM(CI1.WorkedValue) / SUM(CI1.BudgetValue) > 1 THEN ''Over Budget'' ELSE ''Within

Budget'')) as Budget,

 IF(SUM(CI1.BudgetValue) = 0 THEN SUM(CI1.WorkedHours) / SUM(CI1.BudgetQuantity) * 100

 ELSE(SUM(CI1.WorkedValue) / SUM(CI1.BudgetValue)) * 100) as PercentUsed,

 MIN(TotalBilled) as TotalBilled, --multiple lines so just pick one, not the sum

 MIN(TotalPaid) as TotalPaid, --multiple lines so just pick one, not the sum

 P1.FullName as Staff,

 DateCreated,

 Current,

 Complete

FROM "Contracts" C

 LEFT JOIN Status S ON S.ID = C.StatusID

 LEFT JOIN Types T ON T.ID = C.ContractsTypeID

 LEFT JOIN People P1 ON P1.ID = C.LeadStaffID

 LEFT JOIN Organisations O ON O.ID = C.CustomersID

 LEFT JOIN

 (SELECT

 CI.ContractsID,

 WI.ContractItemsID,

 CI.BudgetQuantity,

 CI.BudgetValue,

 CI.BilledQuantity,

 CI.BilledValue,

 CI.PaidValue,

 SUM(WI.HoursWorked) as WorkedHours,

 SUM(WI.Value) as WorkedValue

 FROM ContractItems CI

 LEFT JOIN WorkItems WI ON CI.ID = WI.ContractItemsID

 LEFT JOIN People P ON P.ID = WI.StaffID

 GROUP BY ContractItemsID) as CI1 ON CI1.ContractsID = C.ID

LEFT JOIN

 (SELECT

 ContractsID,

 SUM(ValueBilled) as TotalBilled,

 SUM(ValuePaid) as TotalPaid

 FROM ContractPayments

 GROUP BY ContractsID) as CP ON CP.ContractsID = C.ID

%s

GROUP BY C.ID',

 '', 'SELECT

 ContractsID as ID,

 SUM(WorkedHours) as WorkedHours,

 SUM(WorkedValue) as WorkedValue,

 SUM(BudgetQuantity) as BudgetQty,

 SUM(BudgetValue) as BudgetValue,

 SUM(BilledQuantity) as BilledQty,

 SUM(BilledValue) as BilledValue,

 IF(SUM(BudgetValue) = 0 THEN IF((SUM(WorkedHours) / SUM(BudgetQuantity) > 1) THEN ''Hours

Exceeded'' ELSE ''Within Hours'')

 ELSE IF(SUM(WorkedValue) / SUM(BudgetValue) > 1 THEN ''Over Budget'' ELSE ''Within Budget''))

as Budget,

 IF(SUM(BudgetValue) = 0 THEN ROUND(SUM(COALESCE(WorkedHours, 0)) / SUM(COALESCE(BudgetQuantity,

0)) * 100 TO 2)

 ELSE ROUND(SUM(COALESCE(WorkedValue, 0)) / SUM(COALESCE(BudgetValue, 0)) * 100 TO 2)) as

PercentUsed,

 COALESCE(MIN(TotalBilled), 0) as TotalBilled, --multiple lines so just pick one, not the sum

 COALESCE(MIN(TotalPaid), 0) as TotalPaid --multiple lines so just pick one, not the sum

FROM

(SELECT

 CI.ContractsID,

 CI.ID as ContractItemsID,

 CI.BudgetQuantity,

 CI.BudgetValue,

 CI.BilledQuantity,

 CI.BilledValue,

 CI.PaidValue,

 SUM(COALESCE(WI.HoursWorked, 0)) as WorkedHours,

 SUM(COALESCE(WI."Value", 0)) as WorkedValue

FROM ContractItems CI

LEFT OUTER JOIN WorkItems WI ON CI.ID = WI.ContractItemsID

WHERE CI.ContractsID = %d

GROUP BY ContractItemsID) as CI1

LEFT JOIN

 (SELECT

 ContractsID,

 ROUND(SUM(COALESCE(ValueBilled, 0)) TO 2) as TotalBilled,

 ROUND(SUM(COALESCE(ValuePaid, 0)) TO 2) as TotalPaid

 FROM ContractPayments

 GROUP BY ContractsID) as CP ON CP.ContractsID = CI1.ContractsID

GROUP BY ID', '')

!

Note the use of the "%d" wildcard in various parts of the above scripts. This indicates where the Orixa App will
insert an ID Field from the BusinessObject to generate a list.

Some examples of "Searches" "Types" and "Status" records for this BusinessObject
INSERT INTO Searches
(LinkTable, Name, SQLStr)

VALUES

('Contracts', 'Not Complete', 'Where Complete = false')!

-- INSERT SEARCHES DATA RECORDS --

INSERT INTO Searches

(LinkTable, Name, SQLStr)

VALUES

('Contracts', 'All Records', '')!

INSERT INTO Types
(Name, LinkField, LinkTable)

VALUES

('One-off', 'ContractsTypeID', 'Contracts') !

INSERT INTO Types

(Name, LinkField, LinkTable)

VALUES

('Annual', 'ContractsTypeID', 'Contracts') !

INSERT INTO Types

(Name, LinkField, LinkTable)

VALUES

('Quarterly', 'ContractsTypeID', 'Contracts') !

INSERT INTO Status
(Name, LogicalOrder, LinkTable)

VALUES

('In negotiation', 1, 'Contracts') !

INSERT INTO Status

(Name, LogicalOrder, LinkTable)

VALUES

('Active', 2, 'Contracts') !

INSERT INTO Status

(Name, LogicalOrder, LinkTable)

VALUES

('Complete', 3, 'Contracts') !

Some examples of "Resources" for this BusinessObject

INSERT INTO Resources
(ID, "Name", LocationID, ComponentID,

 SQLStr, "Description", ObjectProperties,

SecurityLevel, LinkTable, TargetTable)

VALUES

(11375, 'ContractItemsDashboardGrid', TypeID('Program Resource'), TypeID('Grid'),

'SELECT

 W.ID,

 W.DateDone,

 P2.FullName as "Staff",

 W.WorkPlanned + '' '' + W.WorkDone,

 T.Name as ItemType,

 W.HoursWorked,

 IF(C.Chargeable = true THEN CAST(C.UnitValue * W.HoursWorked AS DECIMAL(19, 4))

 ELSE CAST(0.00 AS DECIMAL(19,4))) as "BillableValue",

 C.Chargeable,

 S.FullName as "Status",

 C1.DatePaid,

 P.Name as Product,

 P1.FullName as LeadStaff

FROM ContractItems C

 LEFT JOIN Products P ON (C.ProductsID = P.ID)

 LEFT JOIN Types T ON (T.ID = C.ContractItemsTypeID)

 LEFT JOIN People P1 ON (C.StaffResponsibleID = P1.ID)

 LEFT JOIN Status S ON (C.StatusID = S.ID)

 LEFT JOIN ContractPayments C1 ON (C.ContractPaymentsID = C1.ID)

 LEFT JOIN WorkItems W ON (C.ID = W.ContractItemsID)

 LEFT JOIN People P2 ON (W.StaffID = P2.ID)

WHERE C.ID = %d

',

'',

'',

0, 'Contracts', 'ContractItems')!

INSERT INTO Resources
(ID, "Name", LocationID, ComponentID,

 SQLStr, "Description", ObjectProperties,

SecurityLevel, LinkTable, TargetTable)

VALUES

(38091, 'Contracts Completion Dashboard', TypeID('Record'), TypeID('Chart'),

'SELECT

 ContractItemsID as ID,

 SUM(CI.BudgetQuantity) as SumBudget,

 SUM(CI.BilledQuantity) as SumBilled,

 SUM(WI1.Hours) as SumWorked,

 SUM(WI2.Hours) as SumPlanned

FROM ContractItems CI

LEFT JOIN Types T ON T.ID = CI.ContractItemsTypeID

LEFT JOIN

 (SELECT

 ContractItemsID,

 SUM(HoursWorked) as Hours

 FROM WorkItems

 WHERE DateDone < Current_Date

 GROUP BY ContractItemsID) AS WI1 ON CI.ID = WI1.ContractItemsID

LEFT JOIN

 (SELECT

 ContractItemsID,

 SUM(HoursWorked) as Hours

 FROM WorkItems

 WHERE DateDone < Current_Date

 GROUP BY ContractItemsID) AS WI2 ON CI.ID = WI2.ContractItemsID

WHERE ContractsID = [BO Contracts]

GROUP BY ContractItems.ContractsID',

'',

'[General]

DateSaved=24/07/2020

SeriesCount=3

Title=Sum of Totals for Budget, Billing and Worked Hours

FooterText=

View3D=0

LegendVisible=1

AxisVisible=1

[Series0]

ArrowAxisFieldName=

XAxisFieldName=ID

YAxisFieldName=SumBudget

CalcOption=0

SeriesType=3

Title=SumBudget

Color=32768

ShowDataPoints=0

[Series1]

ArrowAxisFieldName=

XAxisFieldName=ID

YAxisFieldName=SumBilled

CalcOption=0

SeriesType=3

Title=SumBilled

Color=128

ShowDataPoints=0

[Series2]

ArrowAxisFieldName=

XAxisFieldName=ID

YAxisFieldName=SumWorked

CalcOption=0

SeriesType=3

Title=SumWorked

Color=8421376

ShowDataPoints=0

',

 0, 'Contracts', 'ContractItems')!

Note that the Resources data-table data includes both SQL to return data from the database and Decoration
data (created by the user in the App) to describe how the Resource dashboard will display.

Accessing BusinessObject Details from the DB Utility

DB Utility Reviewing BusinessObjects

1. DB Utility Open in App, this can be accessed from the "System", "Show DB Management Utility" menu.

2. Select "BusinessObjects" from the Database Treeview.

3. All the BusinessObjects in your App will be listed.

4. The schema elements of the data-table are shown in detail.

5. The SQL Definition is shown in full. This includes the "Description" field, which may contain Orixa
Decorations and generate in-App behaviour.

Accessing BusinessObject Details from the BusinessObjects Edit Form
Once a BusinessObject has been created as a Data-table, with the correct data-structure needed by your App, it is then made visible in-App by
adding a record to the BusinessObjects data-table.

To understand how the different items in this table works it can be easiest to open an example App and review the contents of different
BusinessObjects Records.

Business Objects data-grid

You can see from the above image that the BusinessObjects framework-table includes fields for the Icon, Name, BusinessObjectType & Color to be
used in the App, plus SQL scripts to control how / whether details of the BusinessObject appears in different parts of the App.

Structure of the BusinessObjects Framework-table
CREATE TABLE "BusinessObjects"

("ID" INTEGER DEFAULT UID() NOT NULL,

 "Name" VARCHAR(60) COLLATE "ANSI" NOT NULL,

 "Top" INTEGER DEFAULT 1 NOT NULL,

 "Left" INTEGER DEFAULT 1 NOT NULL,

 "Color" INTEGER

 DESCRIPTION '[Properties]

 DisplayControl=ColorCombo',

 "DisplayScript" CLOB COLLATE "ANSI",

 "ListScript" CLOB COLLATE "ANSI",

 "ViewScript" CLOB COLLATE "ANSI",

 "DiaryScript" CLOB COLLATE "ANSI",

 "SummaryScript" CLOB COLLATE "ANSI",

 "Settings" CLOB COLLATE "ANSI",

 "BusObjType" VARCHAR(2) COLLATE "ANSI" DEFAULT 'N' NOT NULL

 DESCRIPTION 'Distinct',

 "AddNewButton" BOOLEAN DEFAULT true NOT NULL,

 "LinkToImages" BOOLEAN DEFAULT false NOT NULL,

 "LinkToComments" BOOLEAN DEFAULT false NOT NULL,

 "LinkToAddresses" BOOLEAN DEFAULT false NOT NULL,

 "LinkToEmailAddresses" BOOLEAN DEFAULT false NOT NULL,

 "LinkToPhones" BOOLEAN DEFAULT false NOT NULL,

 "SecurityLevel" INTEGER DEFAULT 0 NOT NULL,

 "Icon" INTEGER,

 "DateCreated" TIMESTAMP DEFAULT Current_Timestamp,

 "DateEdited" TIMESTAMP DEFAULT Current_Timestamp,

 "Current" BOOLEAN DEFAULT true NOT NULL,

 "AcceptsLinks" BOOLEAN DEFAULT false NOT NULL,

 "CreatesLinks" BOOLEAN DEFAULT false NOT NULL,

CONSTRAINT "PK_ConfigurationSettings" PRIMARY KEY ("ID"),

CONSTRAINT "NameUnique" UNIQUE ("Name")

)

